§ 1. nobal carrie: / field, Artin app., / gen. base, structure, Sing(f):= $ann(\Omega_{x,s}^2)$. § 2. Main Thms: 1 & 2 BL_X BL_{(S,x)}X N(T) $\Gamma(X)$
§3. $\overline{\mathcal{M}_{g,n}}$.
31. Running assumption $f: X \rightarrow S$ finite type, Noeth schemes. $Sm(f) \subseteq X$ dense. (*)
Defn. A undal curve $/k$ is an $f: C \rightarrow k$ st. (1) C is equi-dim 1 ;
(2) for each pt $t \in C \setminus Sm(f)$, $k(t)/k$ is finite sep. (closed)
& . $C_{t}^{2} \simeq \kappa(t) [u,v]/q(u,v)$ for a non-deg quadratic (Artin approx.) I_{t}^{2} pted étale (C',t') form. q form. q (C,t) (C,t) $(Spec(k[x,t]/(x,y))$.
Example: char(k) \(\in \) \(\tag{k[xi]/(y^2 - \chi^2(x+1))}\), exercise to check
$t = (x_i y)$ $C' := adjoin \sqrt{x+1}, (y - x_i x+1).$ Étale around t .
Defn. f: X-S is called a family of modal curves if
(0) (*) (1) flat (2) fibers X _s -> s we nodal curves.

Local Structure: Prop. $(X, x) \xrightarrow{(A, m)} (S, s)$ as above. Then $O_{S,s}^{\wedge} \longrightarrow O_{X,x}^{\wedge}$ is (1) Fither $\beta \simeq A[u]$ ($\Longrightarrow x \in Sm(f)$) (2) or $B \simeq A' [u,v] / (Q(u,v)-a)$ $(\iff x \notin Sm(f))$ where $A \rightarrow A'$ finite Stale corresp to $\chi(x)/\chi(s)$ $pf: if x \notin Sm(f)$, then $\kappa(x)/\kappa(x)$ is f. xep. $\Rightarrow A \longrightarrow A' \longrightarrow B \quad (as B is herselian heal).$ By assumption $B'_{mB} \cong \kappa(x)[u,u]/q (u,v).$ Then choose $\widetilde{u},\widetilde{v}$ in $\widetilde{B} \Rightarrow \widetilde{B} \simeq A'[u,v]/(Q(u,v)-\widetilde{g})$. 2 life a Exercise: By modifying W&V, we can absorb non-const. part $x \notin Sm(f)$, set s=f(x). Then pted (Y,y) pted (Y,y) pted (Y,y) for some $a \in O(S)$. (X,x) $(S,s) \leftarrow (S,s)$ of: Artin approx. + the above Prop. + absolute , see [OCBY].

Cor: X/S family of world curves.
(1) $\Omega_{X/S}^2$ is locally principally gen. (=) ann $(\Omega_{X/S}^2) = O_X$) is $\tilde{\epsilon}$ tale local on X
(2). $Ann(\Omega_{X/S}^2) = Fit_1(\Omega_{X/S}^1) \leq O_X$
cutting out closed subsch. supp. exactly on XI Sm(f). Sing (f).
(3). If $x \notin Sm(f)$. Then $a \cdot O_{S,s}$ is indep, of the choice. $\sqsubseteq ann(S_{X,x}^2 + Sh)$ $O_{S,s}$ $S_{S,s}$
(4) Sing (f) \longrightarrow S is unramified.
§ 2. Improvement statements. Sotup: regular $S \supseteq D = \bigcup D_i$ SNCD. $f^{-1}(S \wr D) \xrightarrow{f} S \wr D$ is smooth.
Thm 1: \exists successive blow-up $X \xrightarrow{n} X \xrightarrow{T} S$ s.t. (1) center \subseteq Sing (X) (non-reg. lecus, \subseteq Sing (f)). (2) $f \cdot \pi$ is a family of hodal curves (W) same assumption in cotup.).
(3) Sing $(X) \subseteq X$ codin ≥ 3 . [3] Codin ≥ 3 . [4] Codin ≥ 3 . [4] Codin ≥ 3 . [4] Codin ≥ 3 . [5] Choose \square , $\vee(a) = \sum_{i=1}^{r} n_i D_i$. [6] Cod structure: $\vee \times \text{eSing}(f)$, $\sigma = f(x) \in S$, choose \square , $\vee(a) = \sum_{i=1}^{r} n_i D_i$. [6] Codin ≥ 3 . [7] Codin ≥ 3 . [8] Codin ≥ 3 . [9] Codin ≥ 3 . [10] Codin ≥ 3 . [11] Codin ≥ 3 . [12] Codin ≥ 3 . [13] Codin ≥ 3 . [13] Codin ≥ 3 . [14] Codin ≥ 3 . [15] Codin ≥ 3 . [16] Codin ≥ 3 . [17] Codin ≥ 3 . [18] Codin ≥ 3 . [18] Codin ≥ 3 . [18] Codin ≥ 3 . [19] Codin ≥ 3 . [10] Codin ≥ 3 . [11] Codin ≥ 3 . [12] Codin ≥ 3 . [13] Codin ≥ 3 . [14] Codin ≥ 3 . [15] Codin ≥ 3 . [16] Codin ≥ 3 . [17] Codin ≥ 3 . [18] Codin ≥ 3 . [18] Codin ≥ 3 . [19] Codin ≥ 3 . [10] Codin ≥ 3 . [11] Codin ≥ 3 . [12] Codin ≥ 3 . [13] Codin ≥ 3 . [13] Codin ≥ 3 . [13] Codin ≥ 3 . [14] Codin ≥ 3 . [15] Codin ≥ 3 . [15] Codin ≥ 3 . [16] Codin ≥ 3 . [17] Codin ≥ 3 . [17] Codin ≥ 3 . [18] Codin $\geq $
v=1
Now let $T \subseteq Sing(X)$ be a codim 2 component. say $f(T) \subseteq D_1$.

Claim: (0) These no only depends on x, hi(x). of: a. Osh index, of choice. (1) T -> D, is étale. of: it's unvanified of dominant (din'n reason), Di is normal (regular) (2) $\forall x \in T$, $n_1(x)$ is a constant, n(T)pf: can compare w/ 1 ~ x yo ~ s (3) $N(T) \ge 2$. $f: T \subseteq Sing(f).$ pf of thm 1: $BL_TX \rightarrow X$ satisfies (1) L(2), codim 2 components of Sing(X) is inj. ___ 11 ___ Sily (X) $\Upsilon := \text{Strict transf. of } T$. Either $\widetilde{T} \notin Sing(X)$ or $n(\widetilde{T}) = n(T) - 2$. (n(T) = 2 or 3). \prod . C/k nodal curve is solit if (1) each component is grow, irred + smooth (2) all nodes (= 1) of 2 components) are k-ratil. X/S family of nodal curves is split if Xs/k(s) is split t'se S. Thm 1': If X/S is split, then I X - X W/ (1), (3) as before & (2') \tilde{X}/S split. pf idea: In this case, we only have to pass to $O_{S,s}$ & local egh is $UV-TT_i^{hi}$.

Thm 2: X/S in the setup + split. Then $\exists \chi \xrightarrow{\pi} \chi$ successive blow-up (1) Center \subseteq Sing (X)(2) X/S solit modal (3) X is regular. if: Apply Thm I', we already have sing $(x) \subseteq X$ codin =3. cal structure: $uv - \pi t_i$ $m \in r$. (regular \iff $[\Pi=1)$). Consider $X_{\eta D_i}$, we see (1) $S_{ing}(f) = \bigcup_{i=1}^{r} \int_{j=1}^{r} i^{j}$ Local structure: wy each Ti gen, Di (2) Sing $(X) = \bigcup (intersection of 2 Ti's.).$ and has pure codin 3. (cut out by u,v,ti,,tiz). Define: $T(X) = graph \quad \text{we vertex} \leftarrow T_i^{(j)}$ elge \iff if $2 T_i^{(j)}$'s intersect. if $T_i^{(j)}$ intersect w another $T_{i'}^{(j')}$ (necessarily $i \neq i'$). Let $C_{\eta D_i} \subseteq X_{\eta D_i}$ be a comp-passing thru $\chi^{\gamma C(j)}$ X You <u>C</u>_{N0;} ∈ X (picks tangent direction)
alone Tij) = XDi.

$$(A, M), \quad s, t \in M \quad \text{parameters.}$$

$$(A[x,y]/(xy-st), \quad M+(x,y)) \supseteq \{x=y=st=o\}$$

$$\text{Sing}(f).$$

$$\text{Sing}(f).$$

$$\text{Sing}(f). \quad \text{above } V(s).$$

$$\text{Sing}(f). \quad \text{Sing}(f).$$

$$\text{Picture:} \quad \text{Sing}(f).$$

$$\text{Picture:} \quad \text{Sing}(f).$$

$$\text{Sing}(f).$$

§ 3. Mg,n. Fix g,n EN s.t. 2g-2+n >0.
Defn. $(C,(\sigma_1,,\sigma_n) \in C(k)^n)$ is a genus g , n -marked, stable curve if $(C,(\sigma_1,,\sigma_n) \in C(k)^n)$ is a genus g , n -marked, stable curve if
(2) arithmetic genus (C) = g
(3) If irred component $C_0 \subseteq C$, if $C_0' \simeq \mathbb{P}^1$ then there are ≥ 3 special pts (preimage of hodes or σ_1 : (3') Aut (C/k) is finite étale
(3") $\omega_{C/k} \left(\sum_{i=1}^{N} \sigma_{i} \right)$ is ample.
$(X/S, \sigma_{i,}, \sigma_{i} \in X^{sm}(S))$ is — (1 —
f. pr. + flat + fikerwise. (D-M, Knudsen) DM- Fact: \exists moduli stack $\mathcal{M}_{g,n}$ parametrizing these.
(1) Smooth & proper / Spor (7)
(2) Irreducible, wy danse open Mg,n (= smooth bocus).
(3) Coarse moduli space Mg, is a proj. souther 12.
(4) = projective scheme M/Z + M-> Mg,n.